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Bulk-coupled instability at the interface between miscible fluids which have identical 
mechanical properties but disparate electrical conductivities and are stressed by an 
equilibrium normal electric field is studied experimentally and theoretically. Observa- 
tions of fluid motions permit measurement of an instability wavenumber and growth 
rate. 

A model with a layer of diffusive conductivity distribution coupled to uniform 
bounding half-spaces is developed. Numerical integration of linearized electro- 
mechanical equations leads to a set of growing eigenfrequencies with corresponding 
eigenmodes, pure real for small wavenumber and complex (propagating) for large 
wavenumber. 

The fastest growing wavenumber and corresponding growth rate are characterized 
as a function of the conductivity ratio and a time-constant ratio, which reflects the 
importance of inertial and viscous effects. In  the viscous-dominated limit, the de- 
scription agrees with a corresponding surface-coupled theory. The model is evaluated 
for parameters corresponding to experimental observations. 

1. Introduction 
Understanding of electrohydrodynamic instability mechanisms a t  the interface 

between fluids experiencing an equilibrium normal electric field dates back at least 
to Rayleigh's (1882) analysis of the stability limit for charge on a conducting drop. 
More recent work has dealt with instability of a planar layer of liquid stressed by a 
normal electric field (Taylor & McEwan 1965; Melcher 1963) and instability and 
breakup of conducting fluid jets and drops in electric fields (Melcher 1963; Taylor 
1964). 

The dispersion relation for small amplitude motions driven by an initially normal 
electric field at a plane abrupt interface between two Ohmic fluids has been derived 
and verified experimentally in some limiting cases (Melcher & Smith 1969). A basic 
limitation of such a surface-coupled model, with a description of instability dynamics 
in terms of interfacial motions, has led to investigations of mechanisms on the scale 
of the thickness of the interface itself. Observation of an electrohydrodynamic in- 
stability a t  the boundary between fluids with identical mechanical properties but 
differing electrical conductivities in an equilibrium tangential electric field, where the 
surface-coupled theory predicts no electromechanical coupling, has led to a volume- 
coupled description, wherein constant-property layers are spliced together through 
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a layer of varying conductivity (Hoburg & Melcher 1976). This 'transfer relation' 
method, with inclusion of a numerical integration scheme, has been used to model 
instability processes underlying mixing from a highly conducting thin layer into a 
bulk region of smaller uniform conductivity (Hoburg & Melcher 1977). Such bulk- 
coupled analyses set the stage for the model to be presented here: description of 
electrohydrodynamic instability a t  the interface between fluid components experi- 
encing an equilibrium normal electric field, with interfacial structure in the form of a 
conductivity gradient collinear with the initial field direction. 

2. Experimental motivation 
Recent experimental studies have compared interfacial displacements as functions 

of time in a normal electric field with growth rates predicted by the surface-coupled 
model (Kath & Hoburg 1976). In  this context, electrically driven motions on the scale 
of the interfacial conductivity distribution have been documented. Figure 1 (plate 1) 
shows a sequence of shadowgraph photographs taken through the same experimental 
cell with Mazola corn oil, altered in electrical conductivity with anti-static fluid and 
in colour with red dye, interfaced with the pure liquid. After formation, the interface 
is permitted to diffuse for a period of 8 min before application of an electric field in the 
vertical direction. The sequence documents growth of a roughly sinusoidal displace- 
ment from the equilibrium position, and hence instability dynamics driven by charge 
accumulation within the region of varying conductivity. The model to be developed 
here is aimed towards a description of this configuration in terms of the property 
structure of the interfacial region. 

3. A varying-conductivity layer in a normal electric field: 
general equations 
The distribution of fluid conductivity a , (x )  in a region bounded above and below 

by constant-conductivity half-spaces, as shown in figure 2,  is governed by a one- 
dimensional diffusion equation with assumed diffusion coefficient Kd:  

aflo/at = Kd a2ao/a2%. (1) 

(2) 

The solution to (1) reaching limiting values a. = u a  as x - +  +a and a, = a! as 
x - f  -mis  

or in terms of a normalized conductivity function at  time t = to, 

cro(x,t) = *[(a!+@)- ( f la -aa )er f {x /2 (Kd t )* ) ] ,  

where R = d /aa ,  x' = x/lE and I ,  = 2(KdtO)*. hk has a constant value in the half-space 
bounding fluid regions: 

where c B 1 is a number defining the thickness of the region over which (3) must be 
used to specify the conductivity distribution. In the stability analysis to follow, 
results are insensitive to the particular value chosen for c. 
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FIGURE 2. Normalized equilibrium conductivity distribution hi@') in 

varying-conductivity layer for R = 2 and c = 3. 

The general equations governing electromechanical coupling within the region of 
varying conductivity, with viscous and inertial effects included in the Navier-Stokes 
relations and a diffusion time long and charge relaxation time short compared with 
times describing fluid motions, have been written out in previous papers (Hoburg & 
Melcher 1976, 1977). 

4. Determination of layer transfer relations 
With the equilibrium electric field collinear with a gradient in the equilibrium con- 

ductivity distribution, the perturbation dynamics are governed by a system of six 
first-order, variable-coefficient differential equations (Hoburg & Melcher 1977). Appli- 
cation of a fourth-order Runge-Kutta method (Greenspan 197 1) of numerical integra- 
tion determines perturbation variables at x' = c in terms of the same variables a t  
x' = - c .  A set of matrix manipulations, then, results in the elements of a 6 x 6 transfer 
matrix Q defined by 

where 
S = QV, (4) 

s -= [&, &, &!?;a, &!?;a, j z ,  3 3 T ,  

8', j ' ,  3' and 4' denote the normalized perturbation stress, current density, velocity 
and potential respectively, subscripts x and z denote collinear and orthogonal (to the 
conductivity gradient) components respectively, and superscripts a and ,8 denote 
variables evaluated a t  X I  = c and x' = - c  respectively. The elements of Q are func- 
tions of the normalized growth rate 8' = m, the normalized wavenumber k' = kid, R 
and TIT, where 

T = pl;/q, 7 s r/e(Ea)2.  
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5. Layer spliced to bounding half-spaces 
c and x' c -c,  above and below the varying-conductivity 

layer respectively, have no induced perturbation charge in the face of fluid motions. 
The regions are thus electromechanically 'uncoupled ', and may be characterized by 
purely mechanical and purely electrical transfer relations, as developed in the context 
of the analogous tangential-field problem (Hoburg & Melcher 1976), with 2 x 2 transfer 
matrices P@ and Pa describing the mechanical relations: 

The fluid regions x' 

B] = Pa[;:], 

3;) = -Rk'$'$. (8) 

Splicing the three regions together, then, is accomplished by combining (4)-( 8) : 

FV = [0], 

where 0 is a column matrix of six zeros and 

F =  

(9) 

For non-trivial solutions to (9), the dispersion relation takes the form 

D = d & F = O .  (11) 

A n  eigenfrequency s', then, is a value of s' satisfying (1 1) for given R, TIT and k'. 
A search in the complex s' plane for zeros of the function D(s) is carried out according 
to a procedure described by Betchov & Criminale (1967). 

The function D(s') has complex-conjugate symmetry about the real s' axis (i.e. 
D(s: + is;) is the complex conjugate of D(s: - is;)) and hence only a search for zeros in 
the upper half-plane need be carried out. In  general, an infinite set of growing (positive 
real part) eigenfrequencies may be expected (each with its corresponding distribution 
of physical quantities, i.e. eigenfunctions). Attention is here focused on the two fastest 
growing eigenfrequencies, whose nature depends on the value chosen for k', as shown 
in figure 3. Both zeros of D(s') start at the origin when k' = 0 then, with increasing k', 
take on positive, pure-real values. The fastest growing eigenfrequency reaches a 
maximum at a value of k' termed k'*, then decreases to meet the still rising second 
eigenfrequency. At this value of k', the two distinct zeros merge on the real axis, and 
with further increases in k' become a conjugate pair in the complex s' plane. Thus the 
solid line in figure 3 for large k' represents Re s' and the dashed line & I m  s'. 
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k' 

FIGURE 3. Instability growth rate a' us. wavenumber k' for the two fastest growing eigen- 
frequencies, with R = 2 and TIT = 1. -, real part; ---, imaginary part. Both eigenfrequen- 
ciee are pure real for small k', but merge to form a complex-conjugate pair for large k'. The 
largest value of 8' and the corresponding k' are termed a'* and k'* respectively. 

6. Eigenfunctions : potential and velocity distributions 
Insight into the significance of the eigenfrequencies may be gained by plotting the 

distributions of physical quantities as functions of the vertical (x) co-ordinate. For a 
known value of 8' where (1 1) is satisfied, linear combinations of rows of F are taken 
so as to produce zeros everywhere below the main diagonal. Then, because D(s') = 0, 
the (6,6) element will become zero. Thus $'P' may be arbitrarily set to the value 
1 + i0. The manipulated set of equations derived from (10) then determines values of 
the other variables in V. In  turn, (5)-(8) determine the values of variables in S. 
Knowledge of the six /? variables CLb, O i l ,  $'b, fiL.8, and j i b  allows a numerical 
integration of the governing differential equations to determine the distribution of 
each quantity across the layer. Upon arrival a t  the a surface, the values obtained for 
the six variables are compared with the values specified by entries in V and S as a 
check on the validity of the eigenfrequency solution to (11). Distributions of physical 
quantities in the bounding half-spaces are determined by the uncoupled equations 
which led to the half-space transfer relations (5)-(8).  Figures 4-6 are plots of distri- 
butions of the potential $' and normal velocity 0; across the varying-conductivity 
layer and one layer thickness into each bounding half-space. Figure 4 shows eigen- 
functions at the fastest growing eigenfrequency s' = s'*, at k' = k'*, for R = 2 and 
TIT = 1. Figure 5 shows eigenfunctions a t  the second eigenfrequency, also a t  k' = k'*. 
Finally, in figure 6, k' has been increased to 1, where the eigenfrequency is complex, 
and the corresponding physical quantities have the real and imaginary parts denoted 
by the solid and dashed lines. As is typical of eigenfunction distributions, less rapidly 
growing eigenfrequencies involve more rapid spatial variation of physical quantities. 

The nature of the perturbation quantities at the fastest growing eigenfrequency is 
clarified by a comparison with corresponding quantities in the surface-coupled model 
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FICXJRE 4. Eigenfunctions 8 and 2; at the fastest growing eigenfrequency 
s* = 0.0336 with R = 2 and T / r  = 1. 

(Melcher & Smith 1969; Kath & Hoburg 1977) a t  corresponding parameter values, as 
shown in figure 7. The discontinuity in 6' a t  the abrupt surface represents a discon- 
tinuity in the tangential electric field driven by the perturbation normal velocity 0; 
and the equilibrium electric field: 

$'a - $'P = 2 0 2 / (  1 - R-1) 8'. (12) 

The perturbation potential outside the varying-conductivity region and the per- 
turbation normal velocity throughout are quite similar in the bulk-coupled and 
surface-coupled representations of figures 4 and 7 respectively. As expected, the 
surface-coupled 0; is slightly increased in magnitude near the surface and slightly 
decreased away from the surface. Like the corresponding fastest growing normal- 
velocity eigenfunction in the equilibrium orthogonal-field problem (Hoburg & 
Melcher 1976), 0; changes sign near the interface. Unlike the corresponding equili- 
brium orthogonal-field potential eigenfunction, $ also changes sign near the interface, 
consistent with a discontinuity in the surface-coupled description as given by (12). 

Further insight is gained by plotting fluid streamlines corresponding to velocity 
distributions. In  figure 8, streamlines corresponding to the velocity distribution in 
figure 4, i.e. at  k'* and s'*, are plotted. Fluid motions are more extensive in the upper 
(less-conducting) half-space, and form a cellular pattern corresponding to the assumed 
periodicity in the z direction, with a structure similar to corresponding streamlines 
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Fmum 5. Eigenfunctions 6 and $: a t  the second fastest growing 
9' = 0-00753 at k'* with R = 2 and T/7 = 1. 

eigen frequency 

in the surface-coupled model (Kath & Hoburg 1977). The physical effect represented 
here, then, is a sweeping of fluid up from the layer into the less-conducting half-space 
every wavelength, and back down a half-wavelength away. In  figure 9, the streamlines 
correspond to the figure 6 velocity distribution a t  k' = 1.  Here, with a complex eigen- 
frequency, the cellular pattern becomes a series of slanted layers, propagating in the 
z direction. The physical mechanism associated with this mode is similar to that 
responsible for instability in the structured tangential-field model (Hoburg & Melcher 
1976), with charge accumulation and cellular motions leading to propagation. With 
the change in the direction of the equilibrium field comes a reversal in the relationship 
of propagation and streamline slant directions, consistent with the mechanism 
described. 

7. Dependence on conductivity and time-constant ratios 
The behaviour of the fastest growing eigenfrequency s'* and corresponding wave- 

number k'* as functions of the parameters R and TIT is described by figures 10-13. 
In  figures 10 and 11, k'* and s'* are plotted as functions of TIT on a logarithmic scale 
for three values of R. Note the relative insensitivity of both quantities to TIT over a 
wide range. If TIT is increased by increasing Ea, k* increases slowly while s* increases 
less rapidly than quadratically with Ea. Alternatively, if TIT is increased by increasing 
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FIGURE 6. Complex eigenfunctions c$' and < at the fastest growing eigenfrequency at k' = 1 
with R = 2 and T/r  = 1. -, real part; ---, imaginary part. 

E d ,  k* decreases less rapidly than l / ld  and s* also decreases. Thus increasing inertial 
effects at constant R increases the fastest growing wavenumber, i.e. decreases the 
scale of the motion, reflecting the balance between viscous and inertial drag. The 
corresponding fastest growth rate decreases with addition of inertia. 

Figures 12 and 13 display k'* and s'* as functions of R for four values of T/r .  
Increasing R increases k'* and s'*, in a manner very insensitive to R. Sensitivity to 
R increases with increasing inertia. Finally, the relevance of a surface-coupled analysis 
to the description at hand is made clear by considering the limit as T/T 3 0. In  turn, 
k'* becomes increasingly small (see figures 10 and 12), i.e. the fastest growing dis- 
turbance occurs a t  a wavelength long enough to make the layer have the same effect 
as an abrupt interface. Correspondingly, the ' viscous-dominated ' regime of the 
surface-coupled analysis (Kath 8z Hoburg 1977) has a growth rate defined by 

1 

Thus normalizing gives 
S' = ST = )[1- R-112. 

Equation (14) produces the curve labelled 'surface-coupled limit' on figure 13, a 
limiting growth rate approached by the bulk-coupled analysis as inertial effects 
become negligible. 
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FIGURE 7. Eigenfunctions $' and 2; mi determined by surface-coupled theory 
at parameter values corresponding to R = 2 and T/7 = 1. 

8. Correspondence between theory and experiment 
The sequence of shadowgraph photographs shown in figure 1 affords an opportunity 

to test the applicability of the model described in $83-7. A sinusoidal displacement of 
the broadened interfacial structure from the equilibrium position permits an experi- 
mental determination of the wavenumber and growth rate. Growth proceeds roughly 
exponentially through the sequence, and hence the experimental growth rate is 
determined by the slope of a line joining points on a plot of In (displacement/displace- 
ment a t  t = 0) 0s. time. The wavenumber is inferred directly from the observed wave- 
length. The values read from figure 1 are 

Sexp = 0.76 s-', kexp = 269 m-l. 

The values of the material parameters and electric field for the corn-oil experiment 
shown are 

p = 0.94 x los kg/ms, 

7 = 5-46 x kg/ms, 

e = 3.1 q, = 2.74 x 10-11F/m, 

R = 2, 

E" = 1-91 x 105v/m. 
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FIGURE 9. Fluid streamlines corresponding to complex velocity eigenfunction 
in figure 6, at k' = 1 with R = 2 and T/r  = 1. 

Because the diffusion length I ,  is not known, it is not possible to compute k' or 
T/r directly. However, only one value of I ,  can produce values for k'* and TIT corre- 
sponding to the appropriate curve in figure 10. Thus, by iteratively guessing values 
for I ,  to use in computing k'* and TIT, a point on the R = 2 curve consistent with both 
relations is determined. This point is at 

TIT = 0,168, k'* = 0.197 

with Ed = 7 . 3 0 ~  10-4m. In  turn, reading off the value of s'* for the T / T  determined 

s'* = 0.044, from figure 11 gives 

or s* = 0.81s-1. 
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FIGURE 13. a‘* wa. R at constant values of TIT. As TIT + 0, the dependence 

approaches that predicted by a surface-coupled model. 

The good correspondence of this value of s*, determined through the bulk-coupled 
theory using a measured wavenumber, with the directly measured growth rate pro- 
vides evidence of the descriptive relevance of the model to the experiment. 

It is not possible, using experimental documentation of the kind shown in figure 1, 
to claim direct evidence of cellular fluid motions corresponding to those shown in 
figure 8, where it is clear that considerably more fluid motion occurs in the less- 
conducting region. No mechanism for visualizing the flow pattern outside the varying- 
property region has been built into the experiment. The same is true of analogous 
work connecting surface-coupled theory and experiments, where the model predicts 
a high concentration of fluid motions in the less-conducting material: directly obtain- 
able experimental evidence comes in terms of the evolution in time of interfacial 
motions. Comparison of the velocity amplitudes in figures 4 and 7 emphasizes the 
point that the structure of fluid motions in the bulk-coupled model, even through the 
variable-property region, is quite similar to that predicted by the surface-coupled 
model. Motion on the scale of the interfacial region is difficult to observe because, in 
correspondence with the determined most critical wavenumber k’*, the instability 
wavelength is about 32 times as long as the diffusion length I,. The most direct mani- 
festation of interfacial structure comes in terms of a decrease in the predicted and 
observed growth rate. 

9. Conclusions 
The model and experiment described here extend the understanding of instability 

at the interface between fluid components of differing electrical conductivities stressed 
by an equilibrium normal electric field to include coupling mechanisms ‘within the 
interface ’, i.e. bulk-coupled interactions driven by accumulation of volume free charge 
density in a region where a collinear conductivity gradient and electric field appear. 
As such, it forms the logical conclusion to a series of recent descriptions of volume- 
coupled phenomena occurring in geometries traditionally modelled in terms of inter- 
facial motions driven by surface force densities. Although the methods involved in 
describing volume- and surface-coupled phenomena differ considerably, the resulting 
predictions, in terms of fluid motions and the instability growth rate, agree exactly 
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in the appropriate limit, and are quite similar even with broadened interfacial struc- 
ture, with a decreasing growth rate the most significant result of increasing diffusion 
length . 

Interactions of the kind described here are of practical importance in operations 
where an electric field is used to drive fluid mixing on a fine scale, where mechanical 
means are inefficient (Hoburg & Melcher 1977). Recent experiments in an apparatus 
designed to produce shear deformation between viscous fluid components to be mixed 
have demonstrated augmentation of performance with application of an electric field 
across the streamline component structure (Rotz 1976). The analysis presented here 
relates directly to the electrically driven instability responsible for such interactions. 

Mr Farrokh Malihi took the cine film which provided the sequence of photographs 
in figure 1 .  This work was supported by NSF Grant ENG76-09246. 
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( e )  t=0.938 s ( f ) t=  1.25 s 

FIGURE 1. Shadowgraph photographs of fluid-component distributions in experimental cell. 
The lower fluid is more conducting, and the interface has diffused for 8 min after formation. The 
instability dynamics are driven by charge accumulation within the region of varying conduc- 
tivity in an equilibrium vertical electric field. A roughly sinusoidal displacement permits 
measurement of the wavelength and growth rate. The electric field is applied at  t = 0 [frame ( b ) ] .  

HOBURG (Facing p.  304) 


